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3.  Complex Maps and Fractal Basin Boundaries 

 
Until now, we have discussed one-dimensional maps and tra-

jectories. The generalization to more dimensions is straightfor-

ward. For example, a two-dimensional map iterates (propagates) 
points in two-dimensional space, e.g., 

 

 
i i i i i i

X f (X ,Y ) Y g(X ,Y )

f (X ,Y ) a X Y ; g(X ,Y ) b X Y

+ +
= =

= + − = + 

1 1

2 2 2
 (17) 

 
Catalytic chemical reaction dynamics discussed further below is an 

interesting example that can be represented by a multi-dimen-

sional map. 
 

As before, for an analysis of the dynamics of the system repre-

sented by such a map, it is interesting to inspect the space ex-
plored by the system trajectories, as well as the parameter 

space (e.g., the gain factor  for the logistic map) for which the 

system behaves orderly, settles down to a steady state, and for 
which it behaves chaotically. For example, one may wish to know, 

whether a trajectory started in a certain area of the coordinate 

space will converge to a certain attractor, approach a different at-
tractor, or even escape to infinity.  

  

Computer software is available to perform simulations of orderly 
and chaotic dynamics of various physical systems. The visual 

demonstrations in class have used the software package MATHCAD 

(C:\WINMCAD\Programs\Logistic_MAPN.MCD). It was observed 
that the trajectories were usually confined to a limited area around 

the attractors or stable (fix-) points. For example, for the logistic 

map (see Equ. 4), the values of In = f(In-1) always fluctuate within 
a smaller or larger sub-interval of [0,1] in intensity space, cen-

tered about the attractor/fixpoint. The intervals in parameter 

space corresponding to orderly and chaotic behavior are defined 
by the sign of the Liapunov exponent . 

 

file:///F:/WINMCAD/Programs/Logistic_MAPN.MCD
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For multi-dimensional maps, for example the Lorenz weather 

map, the corresponding geometrical object is called basin of at-
traction. These basins have a different form depending on the 

magnitude of the amplification parameter, the quantity  in the 

case of the logistic map, and the attractor(s)/fix-point(s) consid-
ered. 

 

If there is only one attractor and no 

possibility for the system to escape 

into infinity, the geometry of the asso-

ciated basin of attraction is relatively 
simple. However, if there are more 

than one attractor and certain 

routes for escape, a prediction of the 
behavior of the system becomes more 

difficult. The ability for reliable predic-

tions depends on the extent to which 
the boundaries of the various basins 

are known. In fact, it may or may not 

be possible to know this boundary 
precisely. For example, if this bound-

ary is not a continuous, smooth curve 

but ragged and fragmented, there may 
be an unstable point always right next 

to one corresponding to a steady state 
of the system.  

 

Such ragged curves are examples of fractal geometries. Conti-

nental coast lines, meandering rivers, the structure of dendrites, 

or the system of blood vessels in human organs are illustrations of 

fractal objects. These objects have no characteristic length 
scale, they look basically similar, however closely one looks. This 

property is termed "self-similar". It turns out that the basin of 

attraction and the parameter space can have very intricate geo-
metrical structure which replicates on each length scale. In the 

following, the most famous fractals, the Mandelbrot and Julia 

sets (of complex numbers) for the quadratic map will be discussed 
briefly. 

 

 

 

 

 

Self-Similarity of 

Fractal Objects 
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The set of complex numbers {z = (x,y)} defining the boundary 

of the basin of attraction of a (rational) complex map has a special 
name, Julia set (named after the mathematician Julia 1918). The 

boundaries of a similarly defined parameter space form another 

set of complex numbers, which for the map below is called Man-
delbrot set. Consider the simple quadratic map 

 

                      
2

1 ( )n n nz f z C z+ = = +              (18) 

 

where C is a constant. Equ. (18) is an example of the structure of 

the map Equ. (17) and very similar to the logistic map. However, 
in this case, let the map be defined for all complex number. 

 

As before, one can find fixpoints, attractors, and repellors, 
which are now defined on the complex plane. This is, however, not 

of detailed interest in the present context of the geometry of the 

parameter space associated with a particular dynamic behavior de-
scribed by this map. The question to be answered is, for what sets 

Jc of initial (complex) numbers z the trajectory remains bounded, 

i.e., 
 

Jc := {z : |zn|=|f n(z)|< }                  (19)  

 
for a fixed parameter C. The set Jc is the Julia Set for the map f. 

Two of these sets, belonging to two different parameters C, are 

shown on the figure below. The color scheme gives an indication 
of how fast a trajectory escapes to infinity, i.e., how many iteration 

it takes the map to go beyond a certain bound (circle) around its 

initial point. Julia sets are fractal objects. 
 

Given the potentially strong sensitivity to initial conditions of a 

system prone to chaotic behavior, a initial point z, the starting 
point of a trajectory can be called "safe" only, if it is surrounded 

by at least a small area, or volume, of points that all have the 

same character. That is to say that of interest are those Julia 
sets of f that are connected, i.e., those that have a continuous 

interior. The figure shows such a connected Julia set in the top 

panel, while the bottom set is a disconnected Julia set. The 

file:///D:/My Webs/Chm 252_455 Statistical/A-ILSN/Math3-1.doc
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initial points z in this latter set cannot be considered "safe" in the 
sense defined above.  

 

Whether a Julia set for a given map f is connected or discon-
nected depends on the values of the parameters determining that 

map. In the example of the quadratic map of Equ. (18), the 
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parameters are the real and imaginary parts of the complex con-

stant C.  
 

The set of points C for which the Julia set Jc is connected is called 

the Mandelbrot set. It turns out that these points form again a 
fractal object, one that has a main, connected body and a fractal 

boundary. As illustrated in the figure, points C outside this bound-

ary result in disconnected Julia sets, point C inside the main body 

of the Mandelbrot set yield a connected ("safe") Julia set. 

 

Decoding the escape behavior (rapidity of escape) in a color 
scheme, one obtains the interesting figure shown below in the top 

panel, produced with the CHAOS program 
{C:\CHAOS\CHAOS.BAT}.  

The program allows one to "zoom" in on the smaller features. Do-

ing that, one finds self-similarity, similarity of the picture on all 
length scales. 

 

It is also of interest to 
know for which parameter 

subspace the system tra-

jectories remain in some 
basin of attraction and for 

which other parameter 

space, they would not re-
main confined anywhere, 

i.e., when they would es-

cape into infinity. 

 

 

Relation between Julia and  

Mandelbrot Sets 

file:///F:/CHAOS/CHAOS.BAT
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Consider as an example, all trajectories starting from the initial 

point in the origin of the complex plane, z0 = 0. Then, the inter-
esting region of constants C is defined as the subspace on the 

complex plane (of constants C), for which trajectories starting at 

z0 = 0 do not escape within a certain number of iterations 
(color-coded). The result of numerical calculations, which are not 

difficult but computation-intensive, are shown in the figure. Here, 

the boundary of the so-called 

Mandelbrot set is shown. Tra-

jectories for C-values from the in-

side of the boundary are confined, 
those with constants C outside 

will escape into infinity.  
 

The interesting observation re-

garding this fractal is that it 
looks the same on all length 

scales. The lower panel is a mag-

nification of a small region of the 
figure in the upper panel. It is ob-

viously self-similar. In other 

words, the boundary between rel-
ative stability and instability of a dy-

namic system is not well defined. 

The dynamics depends extremely 
sensitively on initial conditions. 

Enlarging a particular region on the 

boundary, e.g., at a bubble-like ex-

trusion, shows again the same feature, here, another bubble-like 

extrusion. In a colored illustration, one can encode further proper-

ties of the trajectories, e.g., how many iterations it takes to leave 
a certain distance from the origin corresponds to different colors. 

As already mentioned above, fractal structures are very com-

mon in nature. We find them in ice crystals, trees, and many other 
natural entities. The reason for the abundance of such structures 

is the underlying simplicity of the mechanisms that produce these 

structures. Again, structure and disorder are very close to each 

 

 

 

Mandelbrot Set 
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other. The following brief discussion of cellular automata illustrates 

this point in replication and self-organization. 


